Data Centric Systems
The Next Paradigm in Computing

Dr. Tilak Agerwala
VP, Data Centric Systems, IBM Research

Dr. Michael Perrone, Research Staff Member
SP Design Principles & Impact

Principle 1: “Ride the technology curve”

Principle 2: Time-to-market

Principle 3: Communication is critical

Principle 4: Standard UNIX

Principle 5: High-performance services

Principle 6: High Availability

Principle 7: Single-System Image Flexibility

Government

- **Science Based Stockpile Stewardship** (SBSS, 1994)
- Dramatic new level of simulation accuracy

Industry

- Drove parallel database adaption: DB2, SAP, Oracle
- Aerospace, Automotive, Chemistry, Database, Electronics, Finance, Geophysics, Information Processing, Manufacturing, Mechanics, Pharmaceuticals, Telecom, Transportation, etc.
The Motivation for Parallelism: Power Savings

Amdahl’s Law

\[P = CV^2f \quad \rightarrow \quad P = cf^\alpha \quad \alpha > 2 \]

Total time:

\[T = T_{Serial} + T_{Parallel} \]

Speed up factor:

\[\left(T_{Serial} + \frac{T_{Parallel}}{N} \right)^{-1} T \]

If the parallel section is large enough, it is more power efficient to use parallelism.

Acceleration by frequency scaling

Acceleration by parallelism

\[P = NP_0 \]
Blue Gene Design Principles – Optimized for power efficiency

Principle 1: *Trade clock speed for lower power consumption*

Principle 2: *Use integration to lower power*

Principle 3: *Focus on network performance*

Principle 4: *Reduce OS jitter*

Principle 5: *Application and hardware Co-Design*

AWARDS
- Top500
- Green500
- Graph500
Data-Centric Systems: Application Domains

Key Domain Characteristics: Big Data, Complex Analytics, Scale and Time to Solution Requirements

Overlapping Requirements in HPC and HPA enable a converged solution
DCS Workflows: Mixed compute capabilities required

Analytics Capability
- Complex code
- Data Dependent Code Paths / Computation
- Lots of indirection / pointer chasing
- Often Memory System Latency Dependent
- C++ templated codes
- Limited opportunity for vectorization
- Limited scalability
- Limited threading opportunity

Massively Parallel Compute Capability
- Simple kernels
- Ops dominated (e.g. DGEMM, Linpack)
- Simple data access patterns
- Can be preplanned for high performance
Heterogeneity Is Important: Power Per Unit Speed Up Factor

- Optimal system design depends on frequencies and Serial/Parallel (S:P) split
- Today static – Tomorrow dynamic

$N = \# \text{ of weak cores} / \# \text{ of strong cores}$

$FR = \text{Strong core frequency} / \text{Weak core frequency}$

$\log(Power/\text{SpeedUp})$ vs $\log_2(N)$

- $S:P = 1:9$
- $S:P = 1:99$
- $S:P = 1:999$
- $S:P = 1:9999$
IBM Data-Centric Design Principles

Principle 1: Minimize data motion
- Data motion is expensive
- Hardware and software to support & enable compute in data
- Allow workloads to run where they run best

Principle 2: Enable compute in all levels of the systems hierarchy
- Introduce “active” system elements, including network, memory, storage, etc.
- HW & SW innovations to support / enable compute in data

Principle 3: Modularity
- Balanced, composable architecture for Big Data analytics, modeling and simulation
- Modular and upgradeable design, scalable from sub rack to 100’s of racks

Principle 4: Application-driven design
- Use real workloads/workflows to drive design points
- Co-design for customer value

Principle 5: Leverage OpenPOWER to accelerate innovation and broaden diversity for clients
Data Centric Systems – Systems Built Around Data

- Integration of **massive data** management and compute with complex analytics
- **Optimized workflow** components (compute and dataflow) across the system
- Data centric systems move computation to the data

Data-Centric Computing
Data Centric System Design: Addresses Latency!

Traditional Computing
Silicon Technology, Frequency Scaling

Si Tech + Parallelism
Amdahl's Law, Density Scaling

Data Centric Computing
Si Tech + Parallel + Systems

Storage
Main Memory
Cache
Processor
OpenPOWER Foundation

MISSION: The OpenPOWER Consortium’s mission is to create an open ecosystem, using the POWER Architecture to share expertise, investment and validated and compliant server-class IP to serve the evolving needs of customers.

– Opening the architecture to give the industry the ability to innovate across the full Hardware and Software stack
 • Includes SOC design, Bus Specifications, Reference Designs, FW OS and Hypervisor Open Source
– Driving an expansion of enterprise class Hardware and Software stack for the data center
– Building a vibrant and mutually beneficial ecosystem for POWER

Example:

POWER CPU + Tesla GPU

Platinum Members

Altera
Google
IBM
Mellanox
Micron
NVIDIA
PowerCore
Samsung
Tyans
Ubuntu

9 Gold Members
16 Silver Members
Building collaboration and innovation at all levels

Welcoming new members in all areas of the ecosystem
100+ inquiries and numerous active dialogues underway
35 members and growing
Data Centric Systems: Activities

- **Co-design**
 - Optimize system capability, trading off within constraints, e.g., power, cost, etc.
 - Arrive at system design points that are driven by real workflows

- **System Architecture**
 - Heterogeneous nodes and memory, e.g., near-memory processing, accelerators, etc.
 - Active Communications / Processing-in-Network to reduce software path length and data movement
 - Active Storage: Low latency storage model for working set and efficient check pointing
 - Continuous workload rebalancing and optimization

- **Resilience**

- **System-wide power management**

- **Software**

- **Performance**
Power Efficiency

- Need significant improvement over what we can get from technology alone

- Workflow efficiency
 - Remapping workflows to data centric elements
 - Data motion is expensive
 - Cost/Performance benefits

- Architectural efficiency
 - Increase workflow parallelism to leverage low-power cores

- Engineering efficiency
 - Improved dynamic power management
 - Power only what’s being used
 - Vary voltage dynamically
 - Minimize power losses
 - New power device technology, power conversion techniques and dense packaging
 E.g., Reduce electrical current conversion loss from 30% (today) to 10% (future)
Resilience

- Need 10-100x improvement in fault resilience

- Fault detection
 - Expose all hardware faults
 - Spend more transistors on error detection
 - “Silent errors” – e.g., Cosmic ray in a multiplier is expensive to protect against

- Fault handling options
 - Hardware faults recover in hardware (e.g., Error Correction Code)
 - Recover in software
 - e.g., reset to a previous checkpoint
 - Identify “don't care” states
 - <1:10 of the time data was not used an fault was irrelevant
 - E.g., unused portions of cachelines & pages; stale variables, etc.
Systems Software Stack

- **Workflow driven data-centric execution model**
 - Computation occurring at different levels of the memory and storage hierarchy
 - Compute, data and communication equal partners
 - Late binding to heterogeneous hardware element
 - Dynamic optimization: Increasingly automated and self-optimizing
 - Hardware support for productivity

- **Programming model**
 - Encompass all aspects of the data and computation management
 - Enable new system functionality while minimizing the impact on programmers
 - MPI, OpenMP and OpenACC extensions
 - Co-existence with lower level programming models
Some Research Areas

- **SYSTEMS**
 - Consistent formal data/system/execution objects & abstractions for efficient reasoning about the system
 - Systems API’s for Power Management, Active networks, Active storage, Active memory, Continuous workload rebalancing and optimization

- **PROGRAMMING MODELS AND RUNTIMES**
 - Heterogeneous massively multithreaded model
 - Enable peer-to-peer heterogeneous distributed compute
 - Late binding of 100’s of millions of threads on millions of elements
 - Dynamic management of time-varying ensembles of workloads

- **RESILIENCE**
 - Full transparency and instrumentation to handle software errors
 - Anomalous pattern detection
 - API’s for Resilience
The Future

- **A time of significant disruption** – industries are digitizing aggressively - Data is emerging as the “critical” natural resource of this century.

- **Data is joining theory, practice and computation** to drive discovery in research and industrial / commercial impact.
 - Integrating compute with data from multiple sources will drive enormous innovation over the next decade!
 - We must address the data explosion and make efficient data management our number one design parameter

- **The Era of Cognitive Supercomputers**
 - Quantify the uncertainty associated with the behavior of complex systems-of-systems and predict outcomes
 - Learn and refine underlying models based on constant monitoring and past outcomes
 - Accommodate “what if” questions in real-time
 - Provide real-time interactive visualization